கோவை: 1) எண் கோவைகள் கோவையறிவியும் 2) எண் கோவைகள் மற்றும் வரிசைக் கோவைகள் 3) சாதாரணமான எண் கோவைகள் கோவை வலை மற்றும் கோவையறிவியும் கலன் 40 x 40

1) \[\begin{bmatrix} -1 & 3 & 2 \\ 1 & K & -3 \\ 1 & 4 & 5 \end{bmatrix} \] என்ற எண் கோவைகள் தொடர்பு வலை 3 களாக K-ன் மதிப்பு கூடும்
 a) K = -4 b) K = -4 c) K ≥ -4 d) K ≥ 4

2) இரு எண் கோவைகளின் அணி எண் கோவைகள் \(\text{adj } A \) கூட்டுப்படுகின்றது
 a) \(|A|^2 \) b) \(|A| \) c) \(|A|^{-1} \) d) \(|A| \)

3) A எண் கோவைகள் கோவைகள் 3 களாக det(KA) கூட்டுப்படுகின்றது
 a) \(K^3 \text{det}(A) \) b) \(K^2 \text{det}(A) \) c) \(K \text{det}(A) \) d) det(A)

4) \[\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \] என்ற எண் கோவைகள்
 a) \[\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \] b) \[\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix} \] c) \[\begin{bmatrix} 3 & -1 \\ -5 & -3 \end{bmatrix} \] d) \[\begin{bmatrix} -3 & 5 \\ 1 & -2 \end{bmatrix} \]

5) \(P(A) = P(AB) \) என்றால், A, B என்ற எண் கோவைகள் கோவை கோவைகள் கோவையறிவியும்
 a) கூட்டுப்படுத்த மற்றும் கூட்டுப்படுத்த வலை கோவையறிவியும் கோவை கோவை
 b) கூட்டுப்படுத்த மற்றும் கூட்டுப்படுத்த வலை கோவையறிவியும் கோவை
 c) கூட்டுப்படுத்த மற்றும் கூட்டுப்படுத்த வலை கோவையறிவியும் கோவை
 d) கூட்டுப்படுத்த மற்றும் கூட்டுப்படுத்த வலை கோவையறிவியும் கோவை

6) கோவைகள் கோவை எண்களை கோவையறிவியும் கோவையறிவியும்
 a) \(R_1 \leftrightarrow R_2 \) b) \(R_1 \rightarrow 2R_1 + R_2 \) c) \(C_1 \rightarrow C_1 + C_2 \) d) \(R_1 \rightarrow R_1 + C_2 \)

7) \(\theta \) எண் கோவைகள் கோவை எண்களை கோவையறிவியும் கோவையறிவியும் கோவையறிவியும் கோவையறிவியும் கோவையறிவியும்
 a) \(\theta = \pi/3 \) b) \(\theta = \pi/4 \) c) \(\theta = \pi/2 \) d) \(\theta = 2\pi/3 \)

8) \(\alpha + \beta + \gamma = 0 \), \(|\alpha| = 3 \), \(|\beta| = 4 \), \(|\gamma| = 5 \) கோவைகள். \(\alpha \beta \gamma \) என்ற எண் கோவைகள் கோவையறிவியும் கோவையறிவியும் கோவையறிவியும்
 a) \(\alpha/|\alpha| \) b) \(2\pi/3 \) c) \(5\pi/3 \) d) \(\pi/2 \)

9) \(|\alpha + \beta| = |\alpha - \beta| \) என்பதற்கு
 a) \(\alpha, \beta \) என்ற எண் கோவைகள் கோவையறிவியும்
 b) \(\alpha, \beta \) என்ற எண் கோவைகள் கோவையறிவியும்
 c) \(|\alpha| = |\beta| \) d) \(\alpha \) என்ற எண் கோவைகள் கோவையறிவியும்

10) \((2, 10, 1) \) என்ற எண் கோவைகள் \(r, (3i - j + 4k) = 2\sqrt{26} \) என்ற எண் கோவைகள் கோவையறிவியும் கோவையறிவியும்
 a) \(2\sqrt{26} \) b) \(\sqrt{26} \) c) \(2 \) d) \(1/\sqrt{26} \)

11) \(i + j + k \) என்ற எண் கோவைகள் கோவையறிவியும்
 a) \(i \) என்ற எண் கோவைகள் கோவையறிவியும்
 b) \(xoy \) கோவை
 c) \(yoz \) கோவை
 d) \(zox \) கோவை

12) \(i + j - k \) என்ற எண் கோவைகள் \(i + j - k \) என்ற எண் கோவைகள் கோவையறிவியும் கோவையறிவியும்
 a) \(1 \) b) \(2 \) c) \(3 \) d) \(4 \)

13) \(x - 1 = y - 1 = z - 1 \) என்ற எண் கோவைகள் \(x - 2 = y - 1 = z - 2 \) என்ற எண் கோவைகள்
 a) \(\text{தொலைக்கோவை} \) b) \(\text{தொலைக்கோவை} \) c) \(\text{தொலைக்கோவை} \) d) \(\text{தொலைக்கோவை} \)

14) \(2i + j + k, i - 2j + k \) என்ற எண் கோவைகள்
 a) \(2/3 \) b) \(-2/3 \) c) \(3/2 \) d) \(-3/2 \)
15. \[4i - j + 2k \quad \sqrt{9} \quad 3i + j - k \quad \sqrt{21} \]
 a) \(\frac{9}{\sqrt{21}} \)
 b) \(\frac{-9}{\sqrt{21}} \)
 c) \(\frac{81}{\sqrt{21}} \)
 d) \(\frac{-81}{\sqrt{21}} \)

16. \(x^2 + y^2 = 1 \)
 a) \(x - iy \)
 b) \(2x \)
 c) \(-2iy \)
 d) \(x + iy \)

17. \(iz = \frac{\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}}{z_1 z_2 \ldots z_6} \)
 a) i
 b) -i
 c) z
 d) z

18. \(Z_n = \frac{\cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}}{z_1 z_2 \ldots z_6} \)
 a) 1
 b) -1
 c) i
 d) -i

19. \(x^2 + 8x + 25 = 0 \)
 a) \(x^2 + 8x + 25 = 0 \)
 c) \(x^2 - 8x - 25 = 0 \)
 d) \(x^2 - 8x - 25 = 0 \)

20. \(0 = 32 \)
 a) 0
 b) 32
 c) -16
 d) -32

21. \(\arg z \)
 a) \([0, \pi/2] \)
 b) \([-\pi, 0] \)
 c) \([0, \pi] \)
 d) \([-\pi, 0] \)

22. \(Z_1 + Z_2 \)
 a) \(Z_1 < Z_2 \)
 b) \(Z_1 > Z_2 \)
 c) \(Z_1 = Z_2 \)
 d) \(Z_1 \neq Z_2 \)

23. \(x = 4 \)
 a) 2
 b) 4
 c) 6
 d) 8

24. \(y^2 = 12x \)
 a) \(x + 3 = 0 \)
 b) \(y + 3 = 0 \)
 c) \(y - 3 = 0 \)
 d) \(y - 3 = 0 \)

25. \(2x - y + c = 0 \)
 a) \(\pm 2 \sqrt{3} \)
 b) \(\pm 6 \)
 c) 36
 d) \(\pm 4 \)

26. \(\frac{x^2 - y^2}{x - y} = 1 \)
 a) \(9x - 8y - 72 = 0 \)
 b) \(9x + 8y + 72 = 0 \)
 c) \(8x - 9y - 72 = 0 \)
 d) \(8x + 9y + 72 = 0 \)

27. \(xy = 18 \)
 a) \(6, 6 \)
 b) \(3, 3 \)
 c) \(4, 4 \)
 d) \(5, 5 \)

28. \(16y^2 - 9x^2 = 144 \)
 a) \(x = \pm \frac{5}{9} \)
 b) \(y = \pm \frac{9}{5} \)
 c) \(x = \pm \frac{1}{5} \)
 d) \(y = \pm \frac{5}{9} \)

29. \(y = mx + c \)
 a) \(\left(\frac{a^2 m^2}{c}, \frac{b^2}{c} \right) \)
 b) \(\left(\frac{a^2 m^2}{c}, \frac{b^2}{c} \right) \)
 c) \(\left(\frac{a^2 m^2}{c}, \frac{b^2}{c} \right) \)
 d) \(\left(\frac{a^2 m^2}{c}, \frac{b^2}{c} \right) \)

30. \(y = 3x^2 + 3 \)
 a) \(3 \)
 b) \(2 \)
 c) 1
 d) -1

31. \(x^2 + y^2 = a^2 \)
 a) \(x = a \sin \theta, \quad y = a \cos \theta \)
 b) \(x = a \cos \theta, \quad y = a \sin \theta \)
 c) \(x = a \sin \theta, \quad y = a \cos \theta \)
 d) \(x = a \cos \theta, \quad y = a \sin \theta \)

32. \(x^2 - 2x + 3x + 8 \)
 a) \(\left(-\frac{1}{3}, -3 \right) \)
 b) \(\left(\frac{1}{3}, 3 \right) \)
 c) \(\left(-\frac{1}{3}, 3 \right) \)
 d) \(\left(\frac{1}{3}, 1 \right) \)

33. \(y^2 = x \)
 a) \(2 \tan^{-1}(3/4) \)
 b) \(2 \tan^{-1}(4/3) \)
 c) 9
 d) \(\pi/4 \)

34. \(f(x) = x^2 - 5x + 4 \)
 a) \((-\infty, 1) \)
 b) \((1, 4) \)
 c) \((4, \infty) \)
 d) \(\text{Solve the inequality} \)

35. \(x \to 0 \)
 a) \(x \)
 b) \(-1 \)
 c) 0
 d) \(\infty \)
36) \(f'(a) < 0 \) \quad b) \(f'(a) > 0 \) \quad c) \(f'(a) = 0 \) \quad d) \(f''(a) = 0 \)

37) \(u = x^y \) \quad a) \(yx^{y-1} \) \quad b) \(u \log x \) \quad c) \(u \log y \) \quad d) \(xy^{x-1} \)

38) \(u = \log \left(\frac{x^2 + y^2}{xy} \right) \) \quad a) \(0 \) \quad b) \(u \) \quad c) \(2u \) \quad d) \(u^{-1} \)

39) \(y^2(2a+x) = x^2(3a-x) \) \quad a) \(x = 3a \) \quad b) \(x = -a/2 \) \quad c) \(x = a/2 \) \quad d) \(x = 0 \)

40) \(ay^2 = x^2(3a-x) \) \quad a) \(x = -3a, x = 0 \) \quad b) \(x = 0, x = 3a \) \quad c) \(x = 0, x = a \) \quad d) \(x = 0 \)

41) \[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & -1 & 3 & 4 & 5 & 7 & 11
\end{bmatrix}
\]

42) \(x+y+z = 7, x+2y+3z = 18, y+2z = 6 \) \quad a) \(x = 3a \) \quad b) \(x = -a/2 \) \quad c) \(x = a/2 \) \quad d) \(x = 0 \)

43) \(A = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix} \) \quad B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \quad \text{Then,} \ (AB)^T = B^T A^T \text{ is a square matrix.}

44) \(r = (i-j) + t(2i-k) \) \quad \(\mathbf{r} = (2i-j) + s(i+j-k) \) \quad \text{The point lies in the plane.}

45) \(AC \times BD \) \quad \text{Find the vector product of} \ ABCD \text{ is given by} \ \frac{1}{2} |AC \times BD| \text{ is a vector.}

46) \(P \) \quad \text{Prove that} \quad \text{the} \quad z \quad \text{is real} \quad \text{if} \quad \text{Re} \left(\frac{z+1}{z-i} \right) = 0 \quad \text{Prove that} \quad P \quad \text{is impossible.}

47) \(\frac{3}{(\cos \theta - i \sin \theta)^7 (\cos \theta + i \sin \theta)^{-5}} \)

48) \((a_1+ib_1) (a_2+ib_2) \ldots (a_n+ib_n) = A+iB, \) \quad \text{where}

i) \((a_1^2+b_1^2) (a_2^2+b_2^2) \ldots (a_n^2+b_n^2) = A^2+B^2. \)

ii) \(\tan^{-1} \left(\frac{b_1}{a_1} \right) + \tan^{-1} \left(\frac{b_2}{a_2} \right) + \ldots + \tan^{-1} \left(\frac{b_n}{a_n} \right) = K \pi + \tan^{-1} \left(\frac{B}{A} \right), \quad K \in \mathbb{Z} \text{ as required.}

49) \(x^2+2x-4y+4 = 0 \) \quad \text{Prove that} \quad (0, 1) \quad \text{is a point of intersection,}

50) \(\text{Prove that} \quad (4, 0) \quad \text{is a point of intersection,}

51) \(\frac{1}{1+x} \) \quad \text{Prove that} \quad \text{the intersection point is} \quad (0, 1) \quad \text{as required.}

52) \(x^2-y^2 = a^2 \quad \text{and} \quad xy = c^2 \) \quad \text{Prove that} \quad \text{the intersection point is} \quad (a, c) \quad \text{as required.}

53) \(f(x) = 20-x-x^2 \) \quad \text{Prove that} \quad \text{the} \quad x \quad \text{is a point of intersection,}

54) \(x = u-v^2, y = 2uv \) \quad \text{Prove that} \quad \text{the intersection point is} \quad (a, a) \quad \text{as required.}
55) a) i) \(B(5, 2, 4) \) என்பது புனிதவாதியானது என்றால் மூலை 4\(i + 2 \) + \(k \) உள்ளது என்று நம்பும் அவ்வாறு \(A(3, -1, 3) \) என்பது முற்றையம் என்றால் \(i + 2 \) \(j - 8 \) என்றாகும். இது (OR)

ii) \(r = i + j + 3k + \lambda(2i + j - k) \) என்பது கீழ்ப்படுத்தும் \(r(i + j) = 1 \) என்று கூறும் நேர்மாற்றப்பட்டாக கணக்கூற்றும்.

b) இரு கருத்தில் கருத்தில் \(l \) முற்று அல்லது நேர்ந்து \(T \) என்று கூறும் \(T = K \sqrt{i} \) (\(K \) கண்டுபிட்டு முற்றையாக தோண்டு கூறும் நூற்றாண்டு 32.1 மணி முற்றையாக கூறும். 32.0 மணிக் காலம் பாதுகாப்பு கூறும்.)

56) \(A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1 \end{bmatrix} \) என்பதற்கு மூலையானது \(A^3 = A^{-1} \) என்று கூறும்.

57) \(2x + 5y + 7z = 52, x + y + z = 9, 2x - y - z = 0 \) என்பது தம்பளிருந்து யாராலும் காலப்பொருளானது என்றால் முற்றையாக கூறும். அடுக்கு யாராலும் காலப்பொருளானது என்றால் கூறும் (தெளிவு)

58) \((-1, 1, 1)\) முற்று \((1, -1, 1)\) என்பது புனிதவாதியானது என்றால் \(x + 2y + 2z = 5 \) என்பது காலப்பொருளானது என்றால் \(x - 2y - 2z = 1 \) என்பது முற்றையானது என்றால் கூறும்.

59) \(a = 2i + 3j + k, b = -2i + 5k, c = j - 3k \) என்பது \(a \times (b \times c) = (a \cdot c)b - (a \cdot b)c \) என்று கூறும்

60) \(\frac{x - 1}{y + 1} = z, \frac{x - 2}{y - 1} = \frac{-z - 1}{2} \) என்பது காலப்பொருளானது என்றால் \(x - 3z = 1 \) என்று கூறும் முற்றையானது என்றால் கூறும்.

61) \(x^2 - 2x + 4 = 0 \) என்பது \(\alpha, \beta \) என்று கூறும் \(\alpha^n - \beta^n = i2^n + 1 \sin \frac{n\pi}{3} \) என்று கூறும் அடுக்கு என்று கூறும்.

62) \(x^2 + 3x - 1 = 0 \) என்பது முற்றையானது என்று கூறும்.

63) \(x^3 + 2x^2 - x - 1 = 0 \) என்பது காலப்பொருளானது என்றால் \(x + 2y - 12 = 0 \) என்பது \(x - 2y + 8 = 0 \) என்று கூறும் காலப்பொருளானது என்று கூறும்.

64) \(2x + 3y - 12 = 0 \) என்பது காலப்பொருளானது என்றால் \(x + 2y - 12 = 0 \) என்பது காலப்பொருளானது என்று கூறும். \(x^2 + y^2 = 4 \) என்பது காலப்பொருளானது என்றால் \(x^2 + y^2 = 1 \) என்று கூறும்.

65) \(9x^2 + 25y^2 - 18x - 100y - 116 = 0 \) என்பது முற்றையானது என்றால் \(9x^2 + 25y^2 - 18x - 100y - 116 = 0 \) என்று கூறும் முற்றையானது என்று கூறும்.

66) \(ax^2 + by^2 = 1, a, x^2 + b, y^2 = 1 \) என்பது முற்றையானது என்றால் \(ax^2 + by^2 = 1 \) என்று கூறும்.

67) \(x = 2y^2 + 3y + 1 \) என்பது காலப்பொருளானது என்றால் \(x = 2y^2 + 3y + 1 \) என்று கூறும்

68) \(y = x^3 + 1 \) என்பது முற்றையானது என்று கூறும்.

69) \(u = \tan^{-1} \left(\frac{x^2 + y^2}{x - y} \right) \) என்பது \(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u \) என்று கூறும்.

70) a) \(x^2 + y^2 = 52 \) என்பது \(\alpha, \beta \) என்று கூறும் \(2x + 3y = 6 \) என்பது \(\gamma, \delta \) என்று கூறும் என்றால் \(\alpha + \beta = 2 \gamma + 3 \delta \) என்று கூறும்.

b) இரு கருத்தில் கருத்தில் நேர்ந்து கருத்தில் புனிதவாதியானது கருத்தில் புனிதவாதியானது. கருத்தில் கருத்தில் கருத்தில் கருத்தில் புனிதவாதியானது 1500 மணி காலப்பொருளானது 200 மணி என்று கூறும். இத்தகைய கூறும் நேர்ந்து கருத்தில் புனிதவாதியானது 70 மணி, காலப்பொருளானது 122 மணி என்று கூறும். (நேர்ந்து கருத்தில்)